## FP2 Arc length and area of surface of revolution

5 (a) Use the definition $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ to show that $\cosh 2 x=2 \cosh ^{2} x-1$.
(b) (i) The arc of the curve $y=\cosh x$ between $x=0$ and $x=\ln a$ is rotated through $2 \pi$ radians about the $x$-axis. Show that $S$, the surface area generated, is given by

$$
S=2 \pi \int_{0}^{\ln a} \cosh ^{2} x \mathrm{~d} x
$$

(ii) Hence show that

$$
S=\pi\left(\ln a+\frac{a^{4}-1}{4 a^{2}}\right)
$$

7 The diagram shows a curye which starts from the point $A$ with coordinutes $(0,2)$. The curve is such that, at every point $P$ on the curve,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x
$$

where $s$ is the length of the anc $A P$ :

(a) (i) Show that

$$
\frac{\mathrm{d} v}{\mathrm{~d} v}=\frac{1}{2} \sqrt{4+s^{2}}
$$

$$
3 \text { markxy }
$$

(ii) Hence show that

$$
x=2 \sinh \frac{x}{2}
$$

(iii) Hence find the cartesian equation of the curve
(b) Show that

$$
y^{2}=4+s^{2}
$$

5 (a) Using the identities

$$
\cosh ^{2} t-\sinh ^{2} t=1, \quad \tanh t=\frac{\sinh t}{\cosh t} \text { and } \operatorname{sech} t=\frac{1}{\cosh t}
$$

show that:
(i) $\tanh ^{2} t+\operatorname{sech}^{2} t=1$;
(2 marks)
(ii) $\frac{\mathrm{d}}{\mathrm{d} t}(\tanh t)=\operatorname{sech}^{2} t$;
(3 marks)
(iii) $\frac{\mathrm{d}}{\mathrm{d} t}(\operatorname{sech} t)=-\operatorname{sech} t \tanh t$.
(b) A curve $C$ is given parametrically by

$$
x=\operatorname{sech} t, y=4-\tanh t
$$

(i) Show that the arc length, $s$, of $C$ between the points where $t=0$ and $t=\frac{1}{2} \ln 3$ is given by

$$
s=\int_{0}^{\frac{1}{2} \ln 3} \operatorname{sech} t \mathrm{~d} t
$$

(ii) Using the substitution $u=\mathrm{e}^{t}$, find the exact value of $s$.

6 (a) Given that

$$
x=\ln (\sec t+\tan t)-\sin t
$$

show that

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t \tan t \tag{4marks}
\end{equation*}
$$

(b) A curve is given parametrically by the equations

$$
x=\ln (\sec t+\tan t)-\sin t, \quad y=\cos t
$$

The length of the arc of the curve between the points where $t=0$ and $t=\frac{\pi}{3}$ is denoted by $s$.

Show that $s=\ln p$, where $p$ is an integer.

5 (a) The arc of the curve $y^{2}=x^{2}+8$ between the points where $x=0$ and $x=6$ is rotated through $2 \pi$ radians about the $x$-axis. Show that the area $S$ of the curved surface formed is given by

$$
S=2 \sqrt{2} \pi \int_{0}^{6} \sqrt{x^{2}+4} \mathrm{~d} x
$$

(b) By means of the substitution $x=2 \sinh \theta$, show that

$$
S=\pi\left(24 \sqrt{5}+4 \sqrt{2} \sinh ^{-1} 3\right)
$$

6 (a) Show that

$$
\frac{1}{4}(\cosh 4 x+2 \cosh 2 x+1)=\cosh ^{2} x \cosh 2 x
$$

(b) Show that, if $y=\cosh ^{2} x$, then

$$
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\cosh ^{2} 2 x
$$

(c) The arc of the curve $y=\cosh ^{2} x$ between the points where $x=0$ and $x=\ln 2$ is rotated through $2 \pi$ radians about the $x$-axis. Show that the area $S$ of the curved surface formed is given by

$$
S=\frac{\pi}{256}(a \ln 2+b)
$$

where $a$ and $b$ are integers.
(7 marks)

6 A curve is defined parametrically by

$$
x=t^{3}+5, \quad y=6 t^{2}-1
$$

The arc length between the points where $t=0$ and $t=3$ on the curve is $s$.
(a) Show that $s=\int_{0}^{3} 3 t \sqrt{t^{2}+A} \mathrm{~d} t$, stating the value of the constant $A$. (4 marks)
(b) Hence show that $s=61$.

7 (a) (i) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} u}\left(2 u \sqrt{1+4 u^{2}}+\sinh ^{-1} 2 u\right)=k \sqrt{1+4 u^{2}}
$$

where $k$ is an integer.
(4 marks)
(ii) Hence show that

$$
\int_{0}^{1} \sqrt{1+4 u^{2}} \mathrm{~d} u=p \sqrt{5}+q \sinh ^{-1} 2
$$

where $p$ and $q$ are rational numbers.
(2 marks)
(b) The arc of the curve with equation $y=\frac{1}{2} \cos 4 x$ between the points where $x=0$ and $x=\frac{\pi}{8}$ is rotated through $2 \pi$ radians about the $x$-axis.
(i) Show that the area $S$ of the curved surface formed is given by

$$
S=\pi \int_{0}^{\frac{\pi}{8}} \cos 4 x \sqrt{1+4 \sin ^{2} 4 x} \mathrm{~d} x
$$

(ii) Use the substitution $u=\sin 4 x$ to find the exact value of $S$.

A curve $C$ is defined parametrically by

$$
x=\frac{t^{2}+1}{t}, y=2 \ln t
$$

(a) Show that $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\left(1+\frac{1}{t^{2}}\right)^{2}$.

## [4 marks]

(b) The arc of $C$ from $t=1$ to $t=2$ is rotated through $2 \pi$ radians about the $x$-axis. Find the area of the surface generated, giving your answer in the form $\pi(m \ln 2+n)$, where $m$ and $n$ are integers.
$8 \quad$ A curve has equation $y=2 \sqrt{x-1}$, where $x>1$. The length of the arc of the curve between the points on the curve where $x=2$ and $x=9$ is denoted by $s$.
(a) Show that $s=\int_{2}^{9} \sqrt{\frac{x}{x-1}} \mathrm{~d} x$.
(b) (i) Show that $\cosh ^{-1} 3=2 \ln (1+\sqrt{2})$.
(ii) Use the substitution $x=\cosh ^{2} \theta$ to show that

$$
s=m \sqrt{2}+\ln (1+\sqrt{2})
$$

where $m$ is an integer.

3 The arc of the curve with equation $y=4-\ln \left(1-x^{2}\right)$ from $x=0$ to $x=\frac{3}{4}$ has length $s$.
(a) Show that $s=\int_{0}^{\frac{3}{4}}\left(\frac{1+x^{2}}{1-x^{2}}\right) \mathrm{d} x$.
(b) Find the value of $s$, giving your answer in the form $p+\ln N$, where $p$ is a rational number and $N$ is an integer.






| 6(a) | Use of $\cosh 2 x=2 \cosh ^{2} x-1$ | MI |  | or $\cosh 4 x=2 \cosh ^{2} 2 x-1$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} \text { RHS } & =\frac{1}{2} \cosh 2 x+\frac{1}{2} \cosh ^{2} 2 x \\ & =\frac{1}{4}(1+2 \cosh 2 x+\cosh 4 x) \end{aligned}$ | Al Al | 3 |  |
|  | If substituted for both $\cosh 4 x$ and $\cosh 2 x$ in LHS M1 only, until corrected <br> If RHS is put in terms of $\mathrm{e}^{x}$ <br> MI for correct substitution <br> Al for correct expansion <br> Al for correct result |  |  |  |
| (b) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cosh x \sinh x=\sinh 2 x$ | M1AI |  | allow AI for $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1-4 \cosh ^{2} x+4 \cosh ^{4} x$ <br> Incorrect form for $\cosh ^{2} x$ in terms of $\cosh 2 x$ MI only |
|  | $\begin{aligned} & \text { Or } \\ & y=\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}{4} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{2 x}-2 \mathrm{e}^{x}}{4} \\ & =\sinh 2 x \end{aligned}$ | (M1) (Al) |  |  |
|  | $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\sinh ^{2} 2 x=\cosh ^{2} 2 x$ | Al | 3 | $\mathrm{AG}$ |
| (c) | $S=2 \pi \int_{(0)}^{(\ln 2)} \cosh ^{2} x \cosh 2 x \mathrm{~d} x$ | M1AI |  | allow even if limits missing |
|  | $=2 \pi \int_{0}^{\ln 2} \frac{1}{4}(1+2 \cosh 2 x+\cosh 4 x) \mathrm{d} x$ | ml |  |  |
|  | $=\frac{2 \pi}{4}\left[x+\frac{2 \sinh 2 x}{2}+\frac{\sinh 4 x}{4}\right]$ | Al |  | Integrated correctly |
|  | Correct use of limits $a=128, b=495$ | $\underset{\mathrm{Al}, \mathrm{Al}}{\mathrm{ml}}$ | 7 | accept correct answers written down with no working. Only one AI if $2 \pi$ not used |
|  | Total |  | 13 |  |
|  |  |  |  |  |
| Q | Solution | Marks | Total | Comments |
| 6(a) | $\frac{\mathrm{d} x}{\mathrm{~d} t}=3 t^{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=12 t$ | BI |  | both correct |
|  | $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=9 t^{4}+144 t^{2}$ | M1 |  | 'their' $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}$ |
|  |  | A1 |  | OE |
|  | $s=\int_{0}^{3} 3 t \sqrt{t^{2}+16} \mathrm{~d} t$ | Alcso | 4 | $A=16$ |
| (b) | $k\left(t^{2}+A\right)^{\frac{3}{2}}$ | M1 |  | where $k$ is a constant; ft their $A$ |
|  | $\left(t^{2}+16\right)^{\frac{3}{2}}$ | $\mathrm{Al}$ |  |  |
|  | $25^{\frac{3}{2}}-16^{\frac{3}{2}}$ | ml |  | $F(3)-F(0)$ |
|  |  | Al eso | 4 | AG |
|  | Total |  | 8 |  |




| Q3 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\frac{\mathrm{d} x}{\mathrm{~d} t}=1-\frac{1}{t^{2}}$ | B1 |  | OE eg $\frac{t(2 t)-\left(t^{2}+1\right)}{t^{2}}$ ACF |
|  | $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{2}{t}$ | B1 |  |  |
|  | $\left(\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\right) 1-\frac{2}{t^{2}}+\frac{1}{t^{4}}+\frac{4}{t^{2}}$ | M1 |  | squaring and adding their expressions and attempting to multiply out |
|  | $1+\frac{2}{t^{2}}+\frac{1}{t^{4}}=\left(1+\frac{1}{t^{2}}\right)^{2}$ | A1 | 4 | AG be convinced |
| (b) | $2 \pi \int_{1}^{2}(2 \ln t)\left(1+\frac{1}{t^{2}}\right) \mathrm{d} t$ | B1 |  | must have $2 \pi$, limits and $\mathrm{d} t$ |
|  |  | M1 |  | integration by parts - clear attempt to integrate $1+\frac{1}{t^{2}}$ and differentiate $2 \ln t$ |
|  | $(2 \pi)\left\{(2 \ln t)\left(t-\frac{1}{t}\right)-\int \frac{2}{t}\left(t-\frac{1}{t}\right)(\mathrm{d} t)\right\}$ | A1 |  | correct (may omit limits, $2 \pi$ and $\mathrm{d} t$ ) |
|  | $2 \pi\left[(2 \ln t)\left(t-\frac{1}{t}\right)-\left(2 t+\frac{2}{t}\right)\right]$ | A1 |  | correct including $2 \pi$ (no limits required) |
|  | $\begin{aligned} & =2 \pi(3 \ln 2-5+4) \\ & =\pi(6 \ln 2-2) \end{aligned}$ | A1 | 5 |  |
|  | Total |  | 9 |  |

